

Synthetic/biopolymer grinding applications using IQ MILL-2070 (Ver. 1.5)

IQ MILL-2070

List of grinding applications for synthetic polymers

Use the numbers to bring you straight to the corresponding page.

(Ver. 1.4)

Use the numbers to bring you straight to the corresponding page.

List of grinding applications for synthetic polymers

Synthetic polymers					
No.	Sample name	Abbrev.			
IQ MILL_Poly_021	Copy paper	Paper			
IQ MILL_Poly_022	Electronic circuit boards	Board			
IQ MILL_Poly_023	Foamed polystyrene	PS			
IQ MILL_Poly_024	Polyethylene (PE) form	PE			
IQ MILL_Poly_025	Low density polyethylene film	LLDPE			
IQ MILL_Poly_026	Polyamide fiber	PA			
IQ MILL_Poly_027	Nitril glove	-			
IQ MILL_Poly_028	Styrene-butadiene rubber	SBR			
IQ MILL_Poly_029	Cardboard	-			

Application example

<u>No.</u>	<u>Sample name</u> (Abbrev.) Sample amount	Before	<u>Conditions</u>	After	<u>Photomicrograph</u>
IQ MILL_Poly_002	Polyethylene (LDPE) 0.48 g		3000 rpm x 30 sec Cryogenic grinding x 2 cycles		200 µm

List of grinding applications for biopolymers

(Ver. 1.4)

Biopolymers				
No.	Sample name			
IQ MILL_Bio_001-1	Boar canines (Teeth)			
IQ MILL_Bio_001-2	Fox, raccoon, raccoon dog (Teeth)			
IQ MILL_Bio_002	Shellfish			
IQ MILL_Bio_003	Bark of moso bamboo			
IQ MILL_Bio_004	Hemp cord			
IQ MILL_Bio_005	Wood chip			
IQ MILL_Bio_006	Cotton			
IQ MILL_Bio_007	Dried squid			
IQ MILL_Bio_008	Beef jerky			
IQ MILL_Bio_009	Shell string			
IQ MILL Bio 010	Sea squirt			

Biopolymers					
No.	Sample name				
IQ MILL_Bio_011	Seaweed stem (Wakame)				
IQ MILL_Bio_012-1	Almond seed (Shell)				
IQ MILL_Bio_012-2	Almond seed (Edible part)				
IQ MILL_Bio_013	Candy				
IQ MILL_Bio_014	Leaves of houseplants				

Application example

High density polyethylene (HDPE) [Cryomilling]

IQ MILL Poly-001

Ground to a particle size of

Characteristics: HDPE or PE-HD is a crystalline thermoplastic resin consisting of linearly bonded repeating units of ethylene with few branches. It is also called rigid polyethylene because of its hardness compared to other polyethylene (PE).

Application: Films and sheets such as shopping bags, blue sheets, etc., also fibers that have been strengthened by stretching (fishnets, screen doors, leisure sheets, etc.).

Pretreatment: Cut in half with nippers

FRONTIER LAB Unauthorized reproduction is prohibited.

1) Immersion in liquid nitrogen followed by grinding is considered one repetition. The initial immersion time in liquid nitrogen is 10 minutes, while subsequent immersion times are 5 minutes.

2) 40 mesh= 0.42 mm opening

100 um

Low density polyethylene (LDPE) [Cryomilling]

Characteristics: Low density polyethylene (LDPE) is a synthetic resin consisting of randomly branched repeating units of ethylene. It is also called soft polyethylene because of its softness compared to other polyethylenes, or high-pressure polyethylene because of its manufacturing process.

Application: Packaging materials (simple packaging for confectionery and clothing, garbage bags, packaging for fresh food, cushioning materials), black agricultural film, sanitary gloves, watering hoses, Tupperware, etc.

Ground to a particle size of approx. 100-200 µm (<40 mesh, yield: 85 %)

Ground to a particle size of approx. 100-200 µm (<40 mesh, yield: 78 %)

* 40 mesh= 0.42 mm opening

LDPE 0.48 g

Grinding ball: WC-10Ф

⁻ Grinding ball: WC-12Φ **Characteristics**: Nylon 6,6 is a polyamide with higher heat resistance and mechanical strength than nylon 6, with a melting point around 265 °C and specific gravity of 1.14. It is one of the strongest materials among engineering plastics. In addition to heat resistance, it has excellent oil resistance, wear resistance, and lubricating properties.

Application: Textiles for clothing, airbags, bearings, liners, rollers, gears, insulating parts, etc.

PP 0.61 g

Sample amount (g)	Room temp. /Cryogenic	Sample container	Grinding ball
0.58	Cryogenic	Sample container L-Ti	WC-12Φ

Milling speed	Grinding time	Pause time	No. of cycles	No. of repetitions
(rpm)	(sec)	(sec)	(Cycle)	
3000	30	20	2	1

Ground to a particle size of about 100-200 µm (<40 mesh, yield: 88 %)

*40 mesh= 0.42 mm opening

Polystyrene (PS) [Cryomilling /room temp. dry/room temp. wet] IQ MILL_Poly-004

PS 1.0 g

 \bullet In cryogenic grinding, the particle size is about 100 $\mu m.$

100 um

• In room temperature dry grinding, the particle size is mainly about 100 µm. (The particles cannot be smaller than this due to aggregation caused by static electricity.)

100 um

• In room temperature dry grinding, the sample container and grinding ball heat is dissipated at Pause time of 60 sec, but when Pause time is 0 sec, the PS particles are heated by the impact of the sample container and the Grinding ball and clump together.

• In room temperature wet grinding with methanol, particles of 10 µm-50 µm were observed. This may be due to the relaxation of the charges between particles by methanol.

Sam amoun	ple it (g)	Room temp./Cryogenic	Sample container	Grinding ball	Milling speed (rpm)	Grinding time (sec)	Pause time	No. of cycles (Cycle)	No. of repetitions ²⁾
1.()	Room temp.(dry/wet) Cryogenic	Sample container L-Ti	Zr-12Φ	3000	30	60 / 10	10 / 1	2

2) Immersion in liquid nitrogen followed by grinding is considered one repetition. The initial immersion time in liquid nitrogen is 10 minutes, while subsequent immersion times are 5 minutes.

1) 40 mesh= 0.42 mm opening, 60 mesh= 0.25 mm opening

Polycarbonate (PC) [Cryomilling/Room temp. milling] IQ MILL_Poly-005

Characteristics: Polycarbonate resin (PC) is an engineering plastic with high transparency, self-extinguishing properties, and the highest impact resistance of any plastic. With transparency comparable to that of glass, PC is also used in camera lenses.


```
1) 40 mesh= 0.42 mm opening
```

• In room temperature grinding, the impact of the grinding ball causes to raise the PC temperature, making the sample flat in shape and impossible to grind.

• In cryogenic grinding, particles of about 200 µm in size can be obtained.

Sample amount (g)	Room temp./Cryogenic	Sample container	Grinding ball	Milling speed (rpm)	Grinding time (sec)	Pause time (sec)	No. of cycles (Cycle)	No. of repetitions ²⁾
0.5	Room temp./Cryogenic	Sample container L-Ti	WC-12Φ	3000	30	10	10 / 2	2 / 1

2) Immersion in liquid nitrogen followed by grinding is considered one repetition. The initial immersion time in liquid nitrogen is 10 minutes, while subsequent immersion times are 5 minutes.

IQ MILL_Poly-006

Characteristics: PVC (PVC) has excellent chemical resistance, corrosion resistance, and insulating properties, and is an inexpensive polymer among plastic materials. Although it is vulnerable to low and high temperatures, it is used in a wide range of applications because it is inexpensive for its many advantages.

Application: It is used for building materials such as water and sewage pipes and corrugated sheets, and leather for furniture. It is often found in familiar places.

PVC thin plates 0.55 g

Sample amount (g)	Room temp. /Cryogenic	Sample container	Grinding ball
0.55	Cryogenic	Sample container L-Ti	WC-12Φ

Cryogenic grinding	

Milling speed	Grinding time	Pause time	No. of cycles	No. of repetitions
(rpm)	(sec)	(sec)	(Cycle)	
3000	20	-	1	-

(<40 mesh, yield: 100 %)

*40 mesh= 0.42 mm opening

Polyvinylidene chloride (PVDC) [Cryomilling]

Characteristics: Polyvinylidene chloride (PVDC) features high barrier to block both oxygen and moisture. This is an outstanding feature not found in other plastics and resins.

Application: Typical applications for PVDC include food packaging films such as wraps, ham, and sausages. Because of its excellent barrier properties, it can prevent unpleasant odors mixed with food odors from filling refrigerators and can also delay oxidation of wrapped foods to prolong the life of the foods. It also has a high heat and tear resistances.

PVDC 0.38 g (10 µm thick)

Sample amount (g)	Room temp. /Cryogenic	Sample container	Grinding ball
0.38	Cryogenic	Sample container L-Ti	WC-12Φ
С	ryogeni	c grindin	g >

Milling speed	Grinding time	Pause time	No. of cycles	No. of repetitions
(rpm)	(sec)	(sec)	(Cycle)	
3000	30	-	1	-

(<40 mesh, yield: 100 %)

*40 mesh= 0.42 mm opening

Characteristics: ABS resin is a copolymer of acrylonitrile, butadiene, and styrene, and is a thermoplastic, amorphous general-purpose resin. The material color is light skin-colored, and it has an excellent balance of mechanical properties such as rigidity, hardness, workability, impact resistance, and bending fatigue.

Application: Mainly for various exterior, housing, and mechanical parts of home appliances and electrical and electronic products, interior parts such as automobile panels, stationery and miscellaneous goods, office furniture components, brush handles, etc.

ABS 0.53 g

Sample amount (g)	Room temp. /Cryogenic	Sample container	Grinding ball		
0.53	Cryogenic	Sample container L-Ti	WC-12Φ		
Cryogenic grinding					
G	rinding con	ditions			

Milling speed	Grinding time	Pause time	No. of cycles	No. of repetitions
(rpm)	(sec)	(sec)	(Cycle)	
3000	30	20	2	1

Ground to a particle size of approx. 100 µm (<60 mesh, yield: 91 %)

*60 mesh= 0.25 mm opening

Characteristics: Silicone is a general term for synthetic polymer compounds that have a main skeleton of siloxane bonds. Generally, it is colorless, odorless, and has water repellency, and is oil resistant, oxidation resistant, and heat resistant compared to the corresponding carbon skeleton polymer. Since it has the properties of a metal oxide (base), it is weak against strong acids and easily deteriorates (bleaching, embrittlement).

Application: PDMS is used in a wide range of familiar and industrial applications, including contact lenses, medical devices, caulking agents, lubricants, and microfluidics.

PDMS 0.55 g

Sample amount (g)	Room temp. /Cryogenic	Sample container	Grinding ball
0.55	Cryogenic	Sample container L-Ti	WC-12Φ

Cryogenic grinding

Milling speed	Grinding time	Pause time	No. of cycles	No. of repetitions
(rpm)	(sec)	(sec)	(Cycle)	
3000	20	20	2	1

Ground to a particle size of approx. 100 μ m (<40 mesh, yield: 71 %)

*40 mesh= 0.42 mm opening

Polymethyl methacrylate (PMMA) [Cryomilling]

IQ MILL_Poly-010

Characteristics: Polymethacrylic acid ester resin (acrylic resin) has high transparency and impact resistance and is easy to form and color thermoplastics.

Application: As a substitute for inorganic glass, it is used for windows of buildings and vehicles, lighting fixture covers, lantern signs, road signs, daily necessities, office supplies, crafts, watch crystals, etc.

PMMA 0.58 g

Sample amount (g)	Room tem /Cryogen	ip. Sam ic conta	Sample container		nding ball
0.58	Cryogen	ic Sam contain	Sample container L-Ti		νC-12Φ
					$\overline{\ }$
Cryogenic grinding					
(Grinding co	onditions			
Milling speed	Grinding time	Pause time	No. o cycle	of es	No. of repetitions
(rpm)	(sec)	(sec)	(Cycl	e)	
3000	30	20	2		1

Ground to a particle size of approx. 10-50 µm (<60 mesh, yield: 95 %)

^{*60} mesh= 0.25 mm opening

Characteristics: A rubber refined from the sap of a rubber tree, it has excellent mechanical characteristics such as tensile strength, tear strength, and wear resistance, but is inferior in heat resistance, oil resistance, weather resistance, and ozone resistance.

Application: Tires, rubber belts, hoses, footwear, etc. .

Sample amount (g)	Room temp./Cryogenic	Sample container	Grinding ball	Milling speed (rpm)	Grinding time (sec)	Pause time (sec)	No. of cycles (Cycle)	No. of repetitions*
0.53	Cryogenic	Sample container L-Ti	WC-12Φ	2500	10-20	20	1	1-2

* Immersion in liquid nitrogen followed by grinding is considered one repetition. The initial immersion time in liquid nitrogen is 10 minutes, while subsequent immersion times are 5 minutes.

Ethylene-vinyl acetate copolymer (EVA) [Cryomilling] IQ MILL_Poly-012

Characteristics: It has excellent low temperature properties, tear strength, impact strength, etc., is highly transparent, and has good appearance and luster. Moreover, it has a low specific density of 30 % or more compared to rubber and PVC, has excellent weather resistance, no ozone aging phenomenon, does not require a plasticizer, and is flexible and non-toxic.

Application: Used as a substitute for inorganic glass, it is used for building and vehicle windows, light fixture covers, lantern signs, road signs, daily necessities, office supplies, crafts, and watch windshields.

(<40 mesh, yield: 100 %)

EVA 0.58 g

Polyethylene terephthalate (PET) [Cryomilling]

Sample: Three types of PET (cut pieces, 25 µm film, 250 µm film)

PET (cut pieces)

Approx. 0.6 g ground

(<40 mesh, yield: 100 %)

PET (Cut pieces) 0.58 g

PET (25 µm film)

Ground after cutting to 5x5 mm pieces (<40 mesh, yield: 100 %)

PET (250 µm film)

Ground after cutting to 5x5 mm pieces (<40 mesh, yield: 100 %)

^{*40} mesh= 0.42 mm opening

All three samples have similar particle shapes.

Sample amount (g)	Room temp./Cryogenic	Sample container	Grinding ball	Milling speed (rpm)	Grinding time (sec)	Pause time (sec)	No. of cycles (Cycle)	No. of repetitions
0.5 – 0.6	Cryogenic	Sample container L-Ti (PC insert tube)	WC-10Φ	3000	30	10	4	1

Polytetrafluoroethylene (PTFE) [Cryomilling]

Characteristics: Polytetrafluoroethylene (PTFE) has excellent heat and chemical resistance and is insoluble in hydrofluoric acid, which is highly corrosive. It has the lowest coefficient of friction of any material discovered to date.

Application: Coated mainly on the surface of cooking utensils, especially metal cooking utensils such as frying pans and pots. Widely used as processing materials in electrical equipment and chemical-mechanical applications that handle high-temperature corrosive fluids.

VAL		21
-	A	
		111111
0	1	2

PTFE 0.58 g

Sample amount (g)	Room temp. /Cryogenic	Sample container	Grinding ball
0.58	Cryogenic	Sample container L-Ti	WC-12Φ
		-	2

Crvogenic grinding	

Milling speed	Grinding time	Pause time	No. of cycles	No. of repetitions
(rpm)	(sec)	(sec)	(Cycle)	
3000	20	10	1	1

(<40 mesh, yield: 100 %)

*40 mesh= 0.42 mm opening

Characteristics: Polytetrafluoroethylene (PTFE) has excellent heat and chemical resistance and is insoluble in hydrofluoric acid, which is highly corrosive. It has the lowest coefficient of friction of any material discovered to date.

Application: Coated mainly on the surface of cooking utensils, especially metal cooking utensils such as frying pans and pots. Widely used as processing materials in electrical equipment and chemical-mechanical applications that handle high-temperature corrosive fluids.

ETFE 0.58 g

Sample amount (g)	Room temp. /Cryogenic	Sample container	Grinding ball
0.58	Cryogenic	Sample container L-Ti	WC-12Φ

Milling speed	Grinding time Pause time		No. of cycles	No. of repetitions ²⁾
(rpm)	(sec)	(sec)	(Cycle)	
2500	30	20	2	3

Ground to a particle size of approx. 200 μ m (<40 mesh¹), yield: 42 %)

1) 40 mesh= 0.42 mm opening

Characteristics: Nylon 6 fiber is tough and has high tensile strength, elasticity and luster. It is wrinkle and wear resistant and is resistant to chemicals such as acids and alkalis. It absorbs up to 2.4 % moisture but reduces tensile strength. Nylon 6 is generally white but can be dyed in a solution bath prior to fabrication.

Application: Textiles for clothing, bearings, liners, rollers, gears, insulating parts, food processing machine parts, packaging machine parts, etc.

X	
n-ju	njim

Nylon 6 0.56 g

Sample amount (g)	Room temp. /Cryogenic	Sample container	Grinding ball
0.56	Cryogenic	Sample container L-Ti	WC-12Φ

Cryogenic grinding

Milling speed	Grinding time	Pause time	No. of cycles	No. of repetitions
(rpm)	(sec)	(sec)	(Cycle)	
3000	20	20	2	1

Ground to a particle size of approx. 100 - 200 μ m (<40 mesh, yield: 94 %)

^{*40} mesh= 0.42 mm opening

Characteristics: Nylon 6,6 is a polyamide with higher heat resistance and mechanical strength than nylon 6, with a melting point around 265 °C and specific gravity of 1.14. It is one of the strongest materials among engineering plastics. In addition to heat resistance, it has excellent oil resistance, wear resistance, and lubricating properties.

Application: Textiles for clothing, airbags, bearings, liners, rollers, gears, insulating parts, etc.

Sample

mount(a)

Nylon 6,6 0.58 g

amount (g)	/oryogen	Conta			
0.58	Cryogen	ic Sam	ple er L-Ti	WC-12Φ	
С	ryogen	ic grin	ding	>	
	Grinding conditions				
Milling	Grinding	Pause	No. of	f No. of	
speed	time	time	cycles	s repetitions	
(rpm)	(sec)	(sec)	(Cycle)	

Room temp.

Cryogenic

Sample

Grinding ball

(<40 mesh, yield: 100 %)

*40 mesh= 0.42 mm opening

Characteristics: Excellent in wear resistance, impact resistance, oil resistance, and low-temperature properties. However, it does not have excellent heat resistance and is prone to degradation under high temperature and humidity.

Application: Paints, adhesives, sponges, sealants and caulking materials, fillers, heat insulators, soundproofing materials, textile products, footwear products, various automotive parts, etc.

PU 0.55 g

Sample amount (g)	Room temp. /Cryogenic	Sample container	Grinding ball
0.55	Cryogenic	Sample container L-Ti	WC-12Φ

Cryogenic grinding

Milling speed	Grinding time	Pause time	No. of cycles	No. of repetitions
(rpm)	(sec)	(sec)	(Cycle)	
3000	20	20	2	1

(<40 mesh, yield: 97 %)

*40 mesh= 0.42 mm opening

Polyetheretherketone (PEEK) [Cryomilling / Room temp.] IQ MILL Poly-019

Characteristics: This thermoplastic resin has very high thermal resistance (glass transition temperature of 143 °C and melting point of 343 °C). It also has excellent flame resistance, mechanical properties, fatigue resistance, abrasion resistance, dimensional stability, and processability, and can be processed by ordinary injection molding machines, or made into film or nonwoven fabric.

- 1. In room-temperature grinding, the whole sample turns blackish and can only be ground marginally.
- 2. At one cryogenic grinding, the pellets were deformed into small flakes.

 Cryogenic grinding was repeated four times to obtain finely ground particles of 40 mesh¹⁾ or less. Yield: 83 %.

 In addition, with 1 g of sample, less than 40 mesh was obtained by two additional repetitions of cryogenic grinding. Yield: 58 %.

Sample amount (g)	Room temp./Cryogenic	Sample container	Grinding ball	Milling speed (rpm)	Grinding time (sec)	Pause time (sec)	No. of cycles (Cycle)	No. of repetitions ²⁾
0.52	Room temp. / Cryogenic	Sample container L-Ti	WC-12Φ	3000	30	20	1	1-4

FRONTIER LAB Unauthorized reproduction is prohibited.

2) Immersion in liquid nitrogen followed by grinding is considered one repetition. The initial immersion time in liquid nitrogen is 10 minutes, while subsequent immersion times are 5 minutes.

Characteristics: One of the super engineering polymers, it is flame retardant with excellent chemical resistance, water resistance, and thermal resistance. Even if it were to burn, it would generate little smoke. It also has excellent electrical properties, weather resistance, and dielectric breakdown strength. It is used in aircraft parts.

> Pretreatment:

A portion of sample was cut into approx. 5 mm pieces using nippers.

PEI 0.53 g

Sample amount (g)	Room temp. /Cryogenic	Sample container	Grinding ball
0.53	Room temp.	Sample container L-Ti	WC-12Φ

Room temp. grinding

Milling speed	Grinding time	Pause time	No. of cycles	No. of repetitions
(rpm)	(sec)	(sec)	(Cycle)	
3000	20	20	10	1

(<40 mesh, yield: 92 %)

*40 mesh= 0.42 mm opening

> Pretreatment:

Copy paper is cut with a knife to about 10 mm in size as shown below.

Copy paper 0.23 g

Sample amount (g)	Room ten /Cryogen	np. Sam ic conta	. Sample container Gr	
0.23	Cryogen	ic Sam	Sample container L-Ti	
С	ryogen	n <mark>ic gri</mark> n	ding	>
	Grinding co	onditions		
Milling	Grinding	Pause	No. of	No. of
speed	ume	ume	Cycles	
(rpm)	(sec)	(sec)	(Cycle)	

(<40 mesh, yield: 90 %)

*40 mesh= 0.42 mm opening

Pretreatment:

Portions of a circuit board are cut into approx. 10 mm pieces using nippers.

(<40 mesh, yield: 100 %)

Electronic circuit boards (2.1 g)

*40 mesh= 0.42 mm opening

Grinding ball WC-10Φ was selected:

When WC-12Φ was used, the grinding ball was stuck between pieces of the circuit board, making them ungrindable.

Sample amount (g)	Room temp./Cryogenic	Sample container	Grinding ball	Milling speed (rpm)	Grinding time (sec)	Pause time (sec)	No. of cycles (Cycle)	No. of repetitions
2.1	Room temp.	Sample container L-Ti	WC-10Φ	2500	30	20	10	-

Foamed polystyrene (PS) [Cryomilling]

IQ MILL_Poly-023

Sample courtesy of Institute for Plastics and Recycling Technology (Leibniz Universität Hannover)

Sample	Room temp./	Sample	Grinding ball
amount (g)	Cryogenic	container	
0.06	Cryogenic	Sample container L-Ti	WC-6Ф x 5

Milling	Grinding	Pause	No. of	No. of
speed	time	time	cycles	repetitions
(rpm)	(sec)	(sec)	(Cycle)	
3000	30	-	1	1

(<40 mesh, yield:99%)

*40 mesh=0.42 mm opening

Polyethylene (PE) form [Cryomilling]

Sample

amount (g)

0.17

Milling speed

(rpm)

3000

Room temp./

Cryogenic

Cryogenic

Grinding

time

(sec)

30

Cryogenic grinding

Grinding conditions

Sample

container Sample

container L-Ti

Pause time

(sec)

20

No. of

cycles

(Cycle)

2

3

IQ MILL Poly-024

(<40 mesh, yield: 77%)

*1

*40 mesh=0.42 mm opening

Sample courtesy of Institute for Plastics and Recycling Technology (Leibniz Universität Hannover)

- *1: Ethanol was added to the grinding container to prevent aggregation due to static electricity before recovery.
- *2: Immersion in liquid nitrogen followed by grinding is considered one repetition. The initial immersion time in liquid nitrogen is 10 minutes, while subsequent immersion times are 5 minutes.

Low density polyethylene (LLDPE) film [Cryomilling] IQ MILL_Poly-025

Sample courtesy of Institute for
Plastics and Recycling Technology
(Leibniz Universität Hannover)

Sample amount (g)	Room temp./ Cryogenic	Sample container	Grinding ball
0.3	Cryogenic	Sample container L-Ti	WC-12Φ

Milling speed	Grinding time	Pause time	No. of cycles	No. of repetitions
(rpm)	(sec)	(sec)	(Cycle)	•
3000	30	20	2	1

(<40 mesh, yield: 47%)

^{*40} mesh=0.42 mm opening

Polyamide fiber [Room temp.]

Sample courtesy of Institute for Plastics and Recycling Technology (Leibniz Universität Hannover)

*1: Fiber aggregates

Sample amount (g)	Room temp./ Cryogenic	Sample container	Grinding ball
0.4	Room temp.	Sample container L-Ti	WC-6 x 5

Room temp. grinding

Dispersion

Milling speed	Grinding time	Pause time	No. of cycles	No. of repetitions
(rpm)	(sec)	(sec)	(Cycle)	
3000	30	60	3	1

(<40 mesh, yield:84%)

Ethanol added

*40 mesh=0.42 mm opening

*1

Nitril glove [Cryomilling]

Pretreatment: Nitril glove is cut with scissors to the appropriate size.

Sample amount (g)	Room temp. /Cryogenic	Sample container	Grinding ball
0.42	Cryogenic	L-SS	WC-12Φ

Milling speed	Grinding time	Pause time	No. of cycles	No. of repetitions
(rpm)	(sec)	(sec)	(Cycle)	
3000	10	10	2	1

(<40 mesh, yield: 99 %)

*40 mesh= 0.42 mm opening

Styrene-butadiene rubber (SBR) [Cryomilling]

IQ MILL_Poly-028

Pretreatment: SBR is cut into 3-5 mm pieces with nippers.

		10
-1		U

Sample	Room temp.	Sample	Grinding ball
amount (g)	/Cryogenic	container	
0.46	Cryogenic	L-SS	WC-12Φ

Cryogenic grinding

MillingGrindingPauseNo. ofspeedtimetimecycles				No. of repetitions
(rpm)	(sec)	(sec)	(Cycle)	
3000	10	10	2	1

Pretreatment: Cardboard is cut with scissors to the appropriate size.

Sample amount (g)	Room temp. /Cryogenic	Sample container	Grinding ball
0.19	Cryogenic	L-SS	Zr-12Φ

Milling Grinding Pause No. of				No. of
speed	time	time	cycles	repetitions
(rpm)	(sec)	(sec)	(Cycle)	
3000	10	10	2	1

(<40 mesh, yield: 93 %)

Characteristics: Wild boar teeth are enamel, hard as crystal, and very difficult to crush. These were used to study the effects of strontium in the 2011 Fukushima nuclear accident.

≻Pretreatment:

Canine teeth are cut into 3-5 mm pieces with nippers.

Canine tooth

Sample amount (g)	Room temp. /Cryogenic	Sample container	Grinding ball
1 canine tooth	Room temp.	Sample container L-Ti	Zr-6Φ x 1

Room temp. grinding

Milling speed	Grinding time	Pause time	No. of cycles	No. of repetitions
(rpm)	(sec)	(sec)	(Cycle)	
1500	60	10	3	-

Sample courtesy of prof. H. Ishiniwa (Fukushima University)

Tooth of fox, raccoon and raccoon dog [Room temp.] IQ MILL_Bio-001-2

Characteristics: The teeth of these animals are enamel, as hard as quartz, making them very hard, and extremely difficult to grind. They were used in a study of the 2011 Fukushima nuclear accident impact to investigate the impact of the strontium.

Pretreatment: A tooth is cut into 3-5 mm pieces with nippers.

Sample courtesy of prof. Y. Takagai (Fukushima University)

Sample amount (g)	Room temp. /Cryogenic	Sample container	Grinding ball
1 canine tooth	Room temp.	Sample container L-Ti	Zr-12Φ x 1

Room temp. grinding

Milling speed	Grinding time	Pause time	No. of cycles	No. of repetitions
(rpm)	(sec)	(sec)	(Cycle)	
2000	20	10	2	-

After grinding of fox teeth (Other teeth are similarly ground.)

5 cm

Shellfish [Room temp.]

IQ MILL_Bio-003

This is difficult to grind. Used for DNA research.

Disposal PP Container (2 mL): DNeasy[®] Plant Mini Kit Buffer solution 0.3 mL

Sample	Room temp.	Sample	Grinding ball
amount (g)	/Cryogenic	container	
0.53	Room	Disposable PP	Zr-5Φ x 1
	temp./wet	Container (2 mL)	Zr-3Φ x 1

Room temp. wet grinding

Milling speed	Grinding time	Pause time	No. of cycles	No. of repetitions
(rpm)	(sec)	(sec)	(Cycle)	
2000	10	10	2	-

Sample courtesy of prof. S. Kaneko (Fukushima University)

Pretreatment: Hemp twines are cut into 3-5 mm pieces with scissors.

50 µm

Approx.10 mm; 7.7 mg (Before cutting)

FRONTIER LAB Unauthorized reproduction is prohibited.

Container: Disposable PP Container (2 mL):Distilled water 1.0 mL

Sample amount (g)	Room temp. /Cryogenic	Sample container	Grinding ball
0.53	Room temp. wet	Disposable PP container	Zr-6Φ x 2

Room temp. wet grinding

Milling speed	Grinding time	Pause time	No. of cycles	No. of repetitions
(rpm)	(sec)	(sec)	(Cycle)	
1500	60	10	10	-

Pretreatment: Toothpicks are cut into 5 mm pieces with nippers.

Wood chips 0.32 g

Sample amount (g)	Room terr /Cryogen	np. Sam ic conta	ple G	rinding ball
0.32	Room tem	np. Sam containe	ple er L-Ti	Zr-12Φ
R	oom te	emp. gr	rinding	
	Grinding co	onditions		
Milling speed	Grinding time	Pause time	No. of cycles	No. of repetitions
(rpm)	(sec)	(sec)	(Cycle)	
3000	30	20	3	-

Pretreatment: A piece of cotton is cut into 3-5 mm pieces with scissors.

Sample
amount (g)Room temp.
/CryogenicSample
containerGrinding ball0.21Room temp.Sample
container L-TiWC-12Φ

Room temp. grinding

Grinding conditions				
Milling speed	Grinding time	Pause time	No. of cycles	No. of repetitions
(rpm)	(sec)	(sec)	(Cycle)	
3000	20	20	10	-

(<40 mesh, yield: 92 %)

*40 mesh= 0.42 mm opening

>Pretreatment:

Dried squid is cut into 3-5 mm pieces with nippers.

* A thin PC insert tube is installed in the container.

Sample amount (g)	Room temp. /Cryogenic	Sample container	Grinding ball
0.61	Cryogenic	Sample container L-Ti	WC-12Φ

Cryogenic grinding

Grinding conditions				
Milling speed	Grinding time	Pause time	No. of cycles	No. of repetitions
(rpm)	(sec)	(sec)	(Cycle)	
3000	30	-	1	-

>Pretreatment:

Beef jerky is cut into 3-5 mm pieces with nippers.

* A thin PC insert tube is installed in the container.

Sample	Room temp.	Sample	Grinding ball
amount (g)	/Cryogenic	container	
1.4	Cryogenic	Sample container L-Ti	WC-12Φ

Cryogenic grinding

Grinding conditions				
Milling speed	Grinding time	Pause time	No. of cycles	No. of repetitions
(rpm)	(sec)	(sec)	(Cycle)	
3000	30	-	1	-

Pretreatment: A shell string is cut into 3-5 mm pieces with nippers.

* A thin PC insert tube is installed in the container.

Sample amount (g)	Room tem /Cryogeni	p. Sam c conta	ple iner	Grinding ball	
0.84	Cryogen	ic Sam	ple er L-Ti	WC-12Φ	
	Cryogenic grinding				
	Grinding co	onditions			
Milling speed	Grinding time	Pause time	No. o cycle:	f No. of s repetitions	
(rpm)	(sec)	(sec)	(Cycle)	

Clay-like solids

Vacuum DryTemp.Drying time(°C)(hour)4024						
Temp.Drying time(°C)(hour)4024	Vacuum Dry					
Temp.Drying time(°C)(hour)4024						
(°C) (hour) 40 24	Temp.	Drying time				
40 24	(°C)	(hour)				
	40	24				

Powder lumps

Room temp. grinding

Milling speed	Grinding time	Pause time	No. of cycles
(rpm)	(sec)	(sec)	(Cycle)
1500	10	-	1

After room temp. grinding

Pretreatment: A piece of sea squirt is cut into about 3-5 mm pieces with nippers.

* A thin PC insert tube is installed in the container.

Clay-like solids

Powder lumps

Room temp. grinding

Milling speed	Grinding time	Pause time	No. of cycles
(rpm)	(sec)	(sec)	(Cycle)
1500	10	-	1

After room temp. grinding

>Pretreatment: Wakame stem is cut into 3-5 mm pieces with nippers.

* A thin PC insert tube is installed in the container.

After room temp. grinding

Temp.	Drying time
(°C)	(hour)
40	24

Solid (hard)

Milling speed	Grinding time	Pause time	No. of cycles
(rpm)	(sec)	(sec)	(Cycle)
2500	10	-	1

Pretreatment: Almond shells are crushed in a vise.

Sample	Room temp./	Sample	Grinding ball
amount (g)	Cryogenic	container	
0.93	Room temp.	Sample container L-Ti	Zr-12Φ

Grinding conditions				
Milling	Grinding	Pause	No. of	No. of
speed	time	time	cycles	repetition
(rpm)	(sec)	(sec)	(cycle)	
3000	30	-	1	1

(< 40 mesh, yield: 76%)

*40 mesh=0.42 mm opening

Almond seed (edible part) [Room temp.]

Pretreatment: Skin is peeled off with a knife.

-					
Sample amount (g)	Room temp Cryogenic	./ Sam conta	ple iner	Gri	nding ball
0.57	Room temp	Sam contain	Sample container L-Ti		VC-12Φ
R	Room temp. grinding				
Grinding conditions					
Milling speed	Grinding time	Pause time	No. o	of es	No. of repetition
(rpm)	(sec)	(sec)	(Cycl	le)	
2500	20	-	1		1

*A thin PC insert tube installed inside the container

Paste-like solids

Organic solvent added

Fat is removed

Solvent is removed by centrifugation 2000 rpm, 3 min

Allowed to dry for 1-2 days

Pretreatment: A candy is cut in half with nippers.

	0	2	
	######################################		

Sample	Room temp.	Sample	Grinding ball
amount (g)	/Cryogenic	container	
1.34	Room temp.	L-SS	Zr-12Φ

Room temp. grinding

Grinding conditions				
Milling speed	Grinding time	Pause time	No. of cycles	No. of repetitions
(rpm)	(sec)	(sec)	(Cycle)	
3000	10	-	1	1

(<40 mesh, yield: 99 %)

[Minute amount]Leaves of houseplants [Cryomilling] IQ MILL_Bio-014

Pretreatment: A leaf is cut with scissors to the appropriate size.

Sample amount (mg)	Room tem /Cryogeni	p. Samj c conta	ole iner Gi	inding ball
18	Cryogen	ic S-S	S Zr-	5Φ×1 pcs.
С	ryoge	nic gri	inding	$_{ m I}$ $>$
Grinding conditions				
Milling	Grinding time	Pause time	No. of	No. of
(rpm)	(sec)	(sec)	(Cycle)	
2000	10	10	2	1

Glossary

Term	Description
PC insert tube	Polycarbonate tube that is inserted to sample container.
Disposable PP container	Disposable polypropylene container
Sample container L-Ti	Sample container, large, made of titanium
Sample container L-SS	Sample container, large, made of hardened stainless steel
WC-12Φ grinding ball	Tungsten carbide (WC) grinding ball, 12 mm diameter
Zr-12Φ grinding ball	Zirconia or zirconium dioxide (ZrO ₂) grinding ball, 12 mm diameter
Milling speed	Grinding speed or rotation speed of motor
Grinding time	Time during which sample is ground
Pause time	Time between runs or time during which grinding is stopped
No. cycles	No. of grinding sequences including grinding time and pause.
No. of repetitions	No. of whole programmed grinding cycles that can include liquid nitrogen cooling, grinding, and pause time when cryomilling.