Analysis of Acrylamide in French Fries using Agilent SampliQ QuEChERS AOAC kit and LC/MS/MS

Food Application

Authors

Fadwa Al-Taher
National Center for Food Safety and Technology
Illinois Institute of Technology
Summit-Argo, IL

Abstract

This application note describes the use of a quick, easy, cheap, effective, rugged, and safe (QuEChERS) sample preparation procedure. The QuEChERS method employs an extraction and cleanup protocol for the determination of acrylamide with 13C$_3$-acrylamide as the internal standard. The analyte and internal standard were separated on a reversed phase C-18 column (2.1 mm × 150 mm, 3 µm) by isocratic elution and analyzed by a triple quadrupole mass spectrometer operating in focused positive electrospray ionization mode. The acrylamide recoveries ranged from 97% to 116% with a relative standard deviation of less than 5%. The limits of detection and quantification were 5 and 10 ng/g, respectively.

Introduction

In 2002, researchers at the Swedish National Food Administration and Stockholm University reported finding acrylamide at levels up to 3 mg/kg in a wide range of potato and cereal-based products such as potato chips, french fries, roasted and baked potatoes, bread, breakfast cereals, and biscuits. Acrylamide forms in carbohydrate-rich foods that are subjected to high temperatures (>120 °C) such as frying, baking and extrusion (1). It is recognized as a neurotoxin and a carcinogen in animals, and a possible carcinogen in humans by the International Agency for Research on Cancer (IARC) (2). High levels of acrylamide are found primarily in potato products, bakery and cereal products, and coffee. Acrylamide is generated from certain food products during heat treatment as a result of the Maillard reaction between certain amino acids and reducing sugars (1). Most laboratories use liquid chromatography/triple quadrupole mass spectrometry (LC/MS/MS) for the analysis of underivatized acrylamide in food samples. Liquid chromatography methods use water to extract acrylamide. A defatting step with hexane, toluene or cyclohexane is
used before or combined with the extraction step, and the aqueous phase is centrifuged (3). The cleanup steps often involve solid-phase extraction (SPE) such as that developed by the U.S. FDA (4).

The QuEChERS method, which was originally designed for the analysis of pesticides in food was modified by Mastovska and Lehotay for the extraction of acrylamide (5). The method involves two major steps: extraction and dispersive SPE cleanup. Water extracts the sample, hexane defats the sample, and the MgSO₄ and NaCl induce separation of the water and acetonitrile layers, forcing the majority of acrylamide into the acetonitrile layer. An aliquot of the organic layer is cleaned up by dispersive solid-phase extraction (dSPE) by using primary secondary amine (PSA) to remove organic acids and anhydrous MgSO₄ to reduce any water left in the extract. The final extract is then analyzed by liquid chromatography/triple quadrupole mass spectrometry operating in positive ion multiple reaction monitoring (MRM) mode.

This application note presents a method for the analysis of acrylamide in french fries with LC/MS/MS. The method includes sample preparation with Agilent SampliQ QuEChERS Extraction kit for acrylamides (p/n 5982-5850) and Agilent SampliQ AOAC Dispersive SPE 2 mL kit (p/n 5982-5022).

Experimental

Reagents and Chemicals

All reagents were Optima or LC/MS grade. Acetonitrile, n-hexane, formic acid and water were purchased from Fisher Scientific (Hanover Park, IL, USA). Acrylamide (Figure 1) and 13C₃-acrylamide (internal standard) were purchased from Cambridge Isotope Laboratories (Andover, MA, USA).

![Acrylamide](image)

Figure 1. Chemical structure of acrylamide.

Standard Solutions

The acrylamide standard stock solution (1 mg/mL) was prepared by dissolving 100 mg of the acrylamide in 100 mL acetonitrile and stored at 4 °C. The internal standard (methacrylamide) stock solution (100,000 µg/mL) was made up by pipetting 0.5 mL of the 1 mg/mL standard into 50 mL acetonitrile and stored at 4 °C. All working solutions were prepared daily by serial dilution in acetonitrile.

Equipment and Material

The analysis was performed on an Agilent 1200 Series HPLC system equipped with an Agilent 6460 Triple Quadrupole LC/MS system (Agilent Technologies, Inc., CA, USA). Separation of the chemicals was performed on a reversed phase C18 column (2.1 mm × 150 mm, 3 µm). The data was processed by Agilent MassHunter software.

Extraction and cleanup were achieved with an Agilent SampliQ QuEChERS Extraction kit for acrylamides (p/n 5982-5850) and an Agilent SampliQ QuEChERS AOAC Dispersive SPE kit (p/n 5982-5022), Agilent Technologies (CA, USA).

Instrument Conditions:

<table>
<thead>
<tr>
<th>Table 1. LC/MS/MS Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column</td>
</tr>
<tr>
<td>Column temperature</td>
</tr>
<tr>
<td>Isocratic mode (%B)</td>
</tr>
<tr>
<td>Flow rate</td>
</tr>
<tr>
<td>Injection volume</td>
</tr>
<tr>
<td>Run time</td>
</tr>
<tr>
<td>Post run time</td>
</tr>
<tr>
<td>Mass Spectrometer</td>
</tr>
<tr>
<td>Capillary voltage</td>
</tr>
<tr>
<td>Nozzle voltage</td>
</tr>
<tr>
<td>Sheath gas temperature</td>
</tr>
<tr>
<td>Drying gas temperature</td>
</tr>
</tbody>
</table>

Sample preparation

Frozen par-fried potato slices were purchased from a local store.
Extraction
One gram of french fries was weighed into a 50 mL centrifuge tube from the Agilent SampliQ QuEChERS Extraction kit. The internal standard (13C$_3$-acrylamide) was added at 500 ng/g. Hexane (5 mL) was added and the tube was vortexed. Water (10 mL) and acetonitrile (10 mL) were added followed by the Agilent SampliQ QuEChERS extraction salt mixture for acrylamides (p/n 5982-5850). The sample tubes were shaken for 1 min vigorously, and centrifuged at 5000 rpm for 5 min.

Dispersive SPE cleanup
The hexane layer was discarded and 1 mL of the acetonitrile extract was transferred to a 2 mL SampliQ QuEChERS AOAC Dispersive SPE tube (p/n 5982-5022). This tube contained 50 mg of PSA and 150 mg anhydrous MgSO$_4$. The tubes were vortexed for 30 sec and then centrifuged at 5000 rpm for 1 min. The supernatant was then placed in an autosampler vial for LC/MS/MS analysis.

Results and Discussion
Chromatographic analysis
The separation of acrylamide and methacrylamide was obtained on a reversed phase C-18 column (2.1 x 150 mm, 3 µm) where an isocratic elution was used with 2.5% methanol/97.5% of 0.1% formic acid. The column temperature was set at 30°C, while the flow rate was maintained at 0.2 mL/min. Figure 3 shows a typical standard chromatogram of acrylamide and methacrylamide.

QuEChERS method
Hexane was used to defat the extract. Addition of water was necessary to facilitate extraction of acrylamide from french fries. A QuEChERS salt packet (p/n 5982-5850) containing 4 g MgSO$_4$ and 0.5 g NaCl was used to extract acrylamide from a 1 g sample of french fries. Addition of salt allowed for the separation of the acetonitrile and water phase. Dispersive SPE was employed for sample cleanup (5).

The QuEChERS protocol in this application note is simple. The long and tedious SPE process, which may cause low recoveries of acrylamide, is not necessary.
Linearity, limit of detection (LOD) and limit of quantitation (LOQ)

Linearity

A linear calibration curve was obtained by plotting the relative responses of analyte (peak area of analyte (acrylamide)/peak area of IS (methacrylamide)) to the relative concentration of analyte (acrylamide)/concentration of IS (13C$_3$-acrylamide). The curve was generated by spiking acetonitrile with acrylamide at a concentration range of 0 – 1000 ng/mL (Figure 4). Excellent linearity was observed ($r^2 > 0.9999$).

Limits of Detection and Quantitation

The limits of detection and quantitation were evaluated from the concentration of acrylamide required to give signal-to-noise ratios of 3 and 10, respectively. The limit of detection was found to be 5 ng/mL while the limit of quantitation (LOQ) was 10 ng/mL.

Recovery and Reproducibility

Acrylamide was spiked into 1:1 acetonitrile:water at two different fortification levels (50 and 100 ng/mL). The analysis was performed in triplicates at each level ($n=3$). Frozen par-fried french fry samples containing 33 ng/mL acrylamide were also spiked at two different fortification levels (100 and 200 ng/mL) and blank corrections were made, since it was difficult to find blank french fry samples. A chromatogram of the spiked french fry sample is shown in Figure 5. The analysis was performed in triplicates at each level ($n=3$). Table 2 shows the recoveries and RSD values for acrylamide.
Conclusion

A simple and fast multiresidue method based on Agilent SampliQ QuEChERS for acrylamide extraction and cleanup with LC/MS/MS analysis has been developed. High extraction yields were obtained with excellent RSD. Therefore, this method can be applied to monitor acrylamide in food samples.

References

<table>
<thead>
<tr>
<th>Table 2. Recoveries and RSDs for Acrylamide in Spiked French Fry Samples and 1:1 Water:Acetonitrile (n=3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1:1 ACN-water</td>
</tr>
<tr>
<td>1:1 ACN-water</td>
</tr>
<tr>
<td>French fries</td>
</tr>
<tr>
<td>French fries</td>
</tr>
</tbody>
</table>